
Data Distribution Tailoring Revisited:

Cost-Efficient Integration of
Representative Data

MOTIVATION
WANT:
• Cheap & representative data.
• Model charging for difficult subgroups.
REALITY:
• Data collection is expensive.
• Existing datasets are biased.
SOLUTION:
1. Combine existing data from data repositories.
2. Enforce group count requirements.

Groups with
High Count

Requirement Rare Groups

Flights Dataset

PROBLEM DEFINITION
GIVEN:
• Data sources with sampling costs.
• Groups with minimum count requirements.
GOAL: Minimize expected total query cost.
CONSTRAINT: Satisfy minimum count requirement.
QUERY MODEL: Uniformly random sampling.

KNOWN STATISTICS
DYNAMIC PROGRAMMING
• Optimal but slow 𝑂 𝑄𝑛 time.

HEURISTIC ALGORITHM RatioColl
• Only 𝑄 overhead cost in special case.
• Linear upper bound in general.

Jiwon Chang1, Bohan Cui1, Fatemeh Nargesian1,
Abolfazl Asudeh2, H.V. Jagadish3

1University of Rochester 2University of Illinois Chicago 3University of Michigan

UNKNOWN STATISTICS
𝜀-GREEDY BANDIT
• Same heuristic as RatioColl.
• No priors needed.
• Sublinear regret bound.

ALGORITHMS
RatioColl
1: 𝑂 ← ∅
2: while query is not satisfied:

3: 𝐺∗ = argmax𝐺𝑗,𝑄𝑗>0 𝑄𝑗 ⋅ min𝑖∈[𝑛]
𝐶𝑖

𝑃𝑖,𝑗
 // Choose priority group

4: 𝐷∗ = argmin𝐷𝑖

𝐶𝑖

𝑃𝑖,∗
 // Maximize priority group per cost

5: 𝑠 ← Query(𝐷∗)
6: 𝑂 ← 𝑂 ∪ {𝑠}
7: return 𝑂

EpsilonGreedy
 1: 𝑂 ← ∅
 2: while query is not satisfied:
 3: if 𝑡 ≤ 𝑛 then 𝐷∗ ← 𝐷𝑡 // Initialization

 4: else:

 5: with probability 𝑝 = 3 ln 𝑡 /𝑡: // Exploration round
 6: 𝐷∗ ← random data source

 7: else: // Greedy exploitation round

 8: let 𝑃𝑖,𝑗 ← estimate of 𝑃𝑖,𝑗 based on sample mean

 8: 𝑅 𝐺𝑗 ← 𝑄𝑗 ⋅ min𝑖∈ 𝑛
𝐶𝑖

𝑃𝑖,𝑗
 for each 𝐺𝑗 // Reward of group

 9: 𝐷∗ ← argmax𝐷𝑖

1

𝐶𝑖
σ𝑗∈[𝑚] 𝑃𝑖,𝑗 ⋅ 𝑅 𝐺𝑗 // Reward of data source

10: 𝑠 ← Query(𝐷∗)
11: 𝑂 ← 𝑂 ∪ {𝑠}
12: update trackers for probability estimation

13: return 𝑂

SELECTED RESULTS
• RatioColl consistently out-performs SOTA.
• EpsilonGreedy competitive with SOTA despite

needing no priors.

COMPAS

Synthetic
Benchmark

	Slide 1

